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Abstract. Rising atmospheric CO2 is expected to increase global temperatures, plant water-use efficiency, 16 

and carbon storage in the terrestrial biosphere. A CO2 fertilization effect on terrestrial vegetation is 17 

predicted to cause global greening as the potential ecospace for forests expands. However, leaf-level 18 

fertilization effects, such as increased productivity and water-use efficiency, have not been documented 19 

from fossil leaves in periods of heightened atmospheric CO2. Leaf gas-exchange rates reconstructed from 20 

early Miocene fossils which grew at southern temperate and tropical latitudes, when global average 21 

temperatures were 5–6°C higher than today reveal that atmospheric CO2 was ~450–550 ppm. Early 22 

Miocene CO2 is similar to projected values for 2040AD, and consistent with Earth System Sensitivity of 23 

3–7°C to a doubling of CO2. While early Miocene leaves had photosynthetic rates similar to modern 24 

plants, southern temperate leaves were more productive than modern due to a longer growing season. 25 

This higher productivity was likely mirrored at northern temperate latitudes as well, where a greater 26 
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availability of landmass would have led to increased carbon storage in forest biomass relative to today. 27 

Intrinsic water-use efficiency of both temperate and tropical forest trees was high, toward the upper limit 28 

of the range for modern trees, which likely expanded the habitable range in regions that could not support 29 

forests with high moisture demands under lower atmospheric CO2. Overall, early Miocene elevated 30 

atmospheric CO2 sustained globally higher temperatures and our results reveal the first empirical 31 

evidence of concomitant enhanced intrinsic water-use efficiency, indicating a forest fertilization effect. 32 

 33 

1 Introduction 34 

Terrestrial plants comprise 450 Gt of carbon, representing 80% of Earth’s dry carbon (C) biomass (Bar-on 35 

et al., 2018). Globally, plants draw down ~120 Gt of atmospheric C per year through photosynthesis, 36 

representing the largest annual C flux on Earth (Beer et al., 2010). Total plant biomass is believed to be 37 

determined in large part by atmospheric carbon dioxide concentrations (Ca), and it is predicted that future 38 

increases in Ca will have a three-pronged effect on the terrestrial biosphere: 1) increased global 39 

temperatures will shift the boundaries of climate zones and thereby the potential forest expanse (Rubel 40 

and Kottek, 2010); 2) productivity will increase because global photosynthesis is C limited and increased 41 

Ca will make more C available to the terrestrial biosphere (Zhu et al., 2016); and 3) elevated Ca will 42 

increase plant water-use efficiency and reduce the threshold for physiological drought (Cernusak, 2020), 43 

making more land area available for biosphere expansion (Zhou et al., 2017). Plant fossils record the 44 

effect of past changes in climate, including CO2 enrichment, and thus fossil floras provide insight into 45 

changes in the carbon cycle and their effects on the terrestrial biosphere from a natural, whole-ecosystem 46 

perspective.  47 

The Miocene has been considered problematic for our understanding of Earth System Sensitivity 48 

(ESS) to Ca, because most proxy-based Ca estimates indicate concentrations near 300 ppm (Foster et al., 49 

2017), close to pre-industrial values, yet global temperatures were 5–6 °C higher than modern (Hansen et 50 

al., 2013). Enhanced radiative forcing is required to maintain such elevated early Miocene temperatures 51 

(Herold et al., 2010; Hansen et al., 2013), and without elevated Ca, climate models cannot achieve such 52 
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high global temperatures in the Miocene (Henrot et al., 2010). The early Miocene also had an expanded 53 

biosphere compared to today, including woody vegetation in locations that are currently too cold and/or 54 

too dry for forests (e.g. Askin and Raine, 2000; Herold et al., 2010). A biosphere of the magnitude 55 

observed in the early Miocene fossil record requires elevated temperatures and plant water-use efficiency, 56 

suggesting Ca levels higher than estimated by most existing proxy reconstructions (Herold et al., 2010; 57 

Henrot et al., 2010). Importantly, plant-based Ca reconstructions have challenged the consensus of low Ca 58 

in the early Miocene (Kürschner and Kvaček, 2009; Reichgelt et al., 2016; Tesfamichael et al., 2017; 59 

Londoño et al., 2018) and previous interpretations of alkenone-based Ca proxies are being disputed 60 

(Bolton et al., 2016; Witkowski et al., 2019). 61 

We applied plant gas-exchange modeling (Franks et al., 2014) to fossil leaves from the early Miocene 62 

(~23 Ma) rainforest ecosystem from southern New Zealand preserved in the Foulden Maar deposit 63 

(Bannister et al., 2012; Reichgelt et al., 2013; Conran et al., 2014; Lee et al., 2016) to reconstruct carbon 64 

assimilation rates (An), intrinsic water-use efficiency (iWUE; the ratio between carbon assimilation and 65 

stomatal conductance to water), and the Ca levels required to maintain these values. The same analyses 66 

were performed on previously published leaf δ13C and micromorphological measurements from two early 67 

Miocene fossil floras from Ethiopia (Tesfamichael et al., 2017) and Panama (Londoño et al., 2018). 68 

Because An, iWUE, and Ca are interdependent (Farquhar et al., 1980; Drake et al., 1997), we 69 

reconstructed these variables in concert for each fossilized leaf recovered from these forest ecosystems. 70 

This allows us to make inferences concerning carbon availability, productivity, and water balance in the 71 

forest. 72 

 73 

2 Methods 74 

2.1 Site Description 75 

Foulden Maar (Fig. 1a) is a unique Konservat-Lagerstätte with abundantly preserved plants and insects 76 

(Kaulfuss et al., 2015; Lee et al., 2016) in southern New Zealand (45.527°S, 170.219°E). It was formed in 77 

an ancient maar-diatreme lake (Fig. 1b) at the Oligocene/Miocene boundary (Fox et al., 2015; Kaulfuss, 78 
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2017) and consists of ~100 kyr of annually laminated diatomite (Lindqvist and Lee, 2009; Fox et al., 79 

2016). The Foulden maar-diatreme complex is part of the larger late Oligocene – late Miocene Waipiata 80 

Volcanic Field that produced a variety of maar volcanoes and scoria cones (Németh and White, 2003). 81 

Plant fossils used in this study were collected from a ~183 m long drill core (Fig. 1c). The Lauraceae-82 

dominated rainforest (Bannister et al., 2012) surrounding the lake grew at ~50°S (Fig. 1a). The climate 83 

was marginally subtropical with a mean annual temperature of ~18°C, similar to modern day climates at 84 

30°S (Reichgelt et al., 2019). The length of the growing season in this climate was ~10 months, compared 85 

to 5–6 months today, as reconstructed from the surface exposure macrofossil assemblage using the 86 

Climate Leaf Analysis Multivariate Program (Reichgelt et al., 2013). 87 

 88 

2.2 Fossil leaf anatomy and paleoecology 89 

Mummified fossil leaves were extracted from turbidite deposits that occur frequently within the Foulden 90 

Maar diatomite core (Fox et al., 2015). The diatomite is loosely consolidated allowing mummified leaves 91 

to be extracted using a combination of water and scalpels. After extraction, the leaves were cut into three 92 

pieces: one for bulk δ13C analysis, one for stomatal conductance measurements, and a third as a reference 93 

specimen. Leaf δ13C was measured using a Costech elemental combustion system (EA) coupled to a Delta 94 

V Plus IRMS (Thermo). In order to place measured δ13C on the VPDB scale, we calibrated measurements 95 

using a two-point isotope calibration based on the USGS40 and USGS41 standards. Measurement 96 

uncertainty was calculated by replicating ~15 samples, and applying averaged uncertainty to the 97 

remaining leaves. For conductance measurements the leaves were soaked in hydrogen peroxide (H2O2) 98 

with up to 40% dilution, with tetra-sodium pyrophosphate salt crystals (Na4P2O7 ∙ 10[H2O]), on a boiling 99 

plate at 40–50 °C for 1–2 hours (Bannister et al., 2012). When the adaxial and abaxial cuticle layer could 100 

be separated, the leaf layers were cleaned of mesophyll cell debris using small paintbrushes and both 101 

layers were stained with <0.5% Crystal Violet (C25N3H30Cl) and mounted on glass slides with glycerin 102 

jelly. Conductance measurements were made on 5–8 pictures at 100× magnification using TSView 103 

7.1.1.2 microscope imaging software on a Nikon Optiphot. Each picture was given bounding boxes (0.3 × 104 
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0.3 mm) on which cells were counted, to calculate stomatal density, and stomatal size measurements were 105 

made using ImageJ 1.48v software (Schneider et al., 2012). 106 

18 distinct leaf morphotypes were identified from the Foulden Maar drill core. Descriptions and 107 

justification for identification are found in the Supplementary Information. Species identifications are 108 

provided, where possible, based on paleobotanical studies from the Foulden Maar surface exposures. 109 

Known species recovered from the Foulden Maar drill core are Litsea calicarioides (Fig. S1a), 110 

Cryptocarya taieriensis (Fig. S1b), C. maarensis (Fig. S1i), Beilschmiedia otagoensis (Fig. S2a) 111 

(Lauraceae) (Bannister et al., 2012), Laurelia otagoensis (Fig. S2h) (Atherospermataceae) (Conran et al., 112 

2013), and Hedycarya pluvisilva (Fig. S2i) (Monimiaceae) (Conran et al., 2016). Otherwise, tentative 113 

genus or family identifications are provided, or unspecified morphotypic qualifiers, for leaves that could 114 

not be assigned a plant group. These will be henceforth be referred to as “C” (Fig. S1c), cf. Myrtaceae 115 

(Fig. S1d), cf. Ripogonum (Fig. S1e), cf. Myrsine (Fig. S1f), “H” (Fig. S1g), cf. 116 

Elaeocarpaceae/Cunoniaceae (Fig. S1h), cf. Dysoxylum (Fig. S2b), cf. Cryptocarya (Fig. S2c), “O” (Fig. 117 

S2d), “P” (Fig. S2e), “Q” (Fig. S2f) and cf. Endiandra (Fig. S2g). 118 

We made 375 anatomical and 80 carbon isotope measurements on 72 organically preserved fossil 119 

leaves representing the 18 species collected from the Foulden Maar deposit (Fig. 1a). The affinities of 120 

modern living relatives of the plant types at Foulden Maar strongly suggest that during the Miocene the 121 

site was characterized by a multi-layered closed canopy rainforest ecosystem (Reichgelt et al., 2013; 122 

Conran et al., 2014). In order to determine atmospheric carbon (Ca), intrinsic water-use efficiency 123 

(iWUE), and carbon assimilation rates (An), the ecological strategies of the individual fossil species at 124 

Foulden Maar need to first be established (Reichgelt and D’Andrea, 2019). Understory species rarely 125 

experience light saturation and utilize respired CO2 that has already undergone isotopic fractionation; 126 

both conditions influence gas-exchange modelling results (Royer et al., 2019). Therefore, Ca 127 

reconstructed from understory species cannot be considered indicative of true global Ca. Here, we 128 

determine whether a fossil leaf type was likely in the canopy or the understory, based on 1) leaf δ13C, 2) 129 

leaf cell density, and 3) sinuosity of the epidermal cell walls. A large range of leaf δ13C in a single species 130 
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is indicative of different levels of light saturation, which indicates that this species may preferentially 131 

occur in the subcanopy or in the understory (Graham et al., 2014). Leaves in the canopy, experiencing 132 

light saturation, divide epidermal cells rapidly compared to leaves in the shade, leading to high cell 133 

densities and relatively high leaf mass per areas in sun-exposed leaves (Šantrůček et al., 2014). Finally, a 134 

high level of anticlinal cell wall sinuosity has been interpreted as indicative of low-light conditions 135 

(Kürschner, 1997; Bush et al., 2017). We consider these three lines of evidence occurring in concert as 136 

indicative of a canopy or subcanopy ecological preference.  137 

 138 

2.3 Modelling gas-exchange 139 

Atmospheric carbon dioxide (Ca), plant photosynthesis (An), and intrinsic water-use efficiency (iWUE) 140 

are tightly linked (Farquhar et al., 1980; Drake et al., 1997), which allows us to solve for these parameters 141 

iteratively, through anatomical and carbon isotope (δ13C) measurements of the fossil leaves. The Franks et 142 

al. (2014) gas-exchange model solves for Ca, by iteratively reconstructing An and leaf conductance to 143 

atmospheric carbon (Gc), using a Monte Carlo approach. This means that every Ca reconstruction has an 144 

associated An and Gc value. 145 

 146 

𝐶𝑎 =
𝐴𝑛

𝐺𝑐 × (1 −
𝐶𝑖
𝐶𝑎

)⁄
 (1) 147 

 148 

In which Ci/Ca represents the ratio of intercellular carbon to atmospheric carbon, which can be 149 

reconstructed using known leaf fractionation processes: fractionation caused by diffusion (a), 150 

carboxylation (b), and fractionation caused by the preferential uptake of 12C to 13C in photosynthesis (Δ), 151 

which is also influenced by the rate at which the leaf is photosynthesizing (Farquhar et al., 1982). 152 

 153 

𝐶𝑖

𝐶𝑎
=

𝛥 − 𝑎

𝑏 − 𝑎
 (2) 154 
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 155 

Here, a = 4.4‰ and b = 29‰ (Farquhar et al., 1982; Roeske and O’Leary, 1984). Δ can be calculated 156 

from the δ13C of the air, derived from Tipple et al. (2010) and measurements of leaf δ13C (Farquhar and 157 

Richards, 1984; Farquhar et al., 1989). Leaf and air δ13C used in the Franks et al. (2014) model are 158 

presented in Table S1. 159 

 160 

𝛥 =
𝛿13𝐶𝑎𝑖𝑟 − 𝛿13𝐶𝑙𝑒𝑎𝑓

1 + 𝛿13𝐶𝑙𝑒𝑎𝑓
(3) 161 

 162 

Gc is determined by the maximum capacity for conductance of a leaf surface (Gmax), the ratio of 163 

operational conductance to Gmax (ζ), boundary layer conductance (Gb), and mesophyll conductance (Gm) 164 

(Franks et al., 2014).  165 

 166 

𝐺𝑐 = (
1

𝐺𝑏
+

1

𝜁 × 𝐺𝑚𝑎𝑥
+

1

𝐺𝑚
)

−1

 (4) 167 

 168 

Gb, ζ, and Gm are all changeable under natural conditions (e.g. Schuepp, 1993; Niinemets et al., 2009; 169 

Londoño et al., 2018) and it is highly disputed if these variables can be determined from fossil leaf 170 

material at all (e.g. McElwain et a., 2016; Soh et al., 2017). However, we adopt a standardized approach 171 

put forward by Franks et al. (2014) to obtain input for these variables. Gb = 2 ± 0.1 mol m-2 s-1, ζ = 0.2 ± 172 

0.02 (Franks et al., 2009; Dow et al., 2014), and Gm is determined using an empirical calibration (Evans 173 

and Von Caemmerer, 1996).  174 

 175 

𝐺𝑚 = 0.013 × 𝐴𝑛 (5) 176 

 177 
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Gmax is determined using predominantly measurable anatomical features of the fossil leaf cuticle (Franks 178 

and Beerling, 2009): stomatal density (SD), maximum aperture surface area (amax), pore depth (pd), and 179 

the ratio of diffusivity of CO2 in air over the molar volume of air (d/v), here taken as 0.000714 mol m-1 s-1 180 

(Marrero and Mason, 1972). 181 

 182 

𝐺𝑚𝑎𝑥 = 𝑑
𝑣⁄ × 𝑆𝐷 ×

𝑎𝑚𝑎𝑥

𝑝𝑑 +
𝜋
2 √𝑎𝑚𝑎𝑥 𝜋⁄

 (6) 183 

 184 

In this equation, SD can be measured directly from the leaf, pd is assumed to be the same as guard cell 185 

width (gcw), and amax is determined assuming a circular opening for the aperture, with the measurable 186 

pore length (pl) as the diameter (Franks et al., 2014). 187 

 188 

𝑎𝑚𝑎𝑥 = 𝜋 ×
𝑝𝑙

4
 (7) 189 

 190 

Measurements of SD, gcw and pl used in the Franks et al. (2014) gas-exchange model are presented in 191 

Table S1. 192 

 193 

Hence, it is clear that though Gc is largely determined by measurable anatomical parameters, because An 194 

is a component of calculating Gm, Gc is solved iteratively. However, An is also solved iteratively, as it is 195 

dependent on Ca and the carbon saturation value (Γ), set at 40 ppm (Franks et al., 2013). 196 

 197 

𝐴𝑛 ≈ 𝐴0 ×
(𝐶𝑎 − 𝛤) × (𝐶𝑎0 + 2𝛤)

(𝐶𝑎 + 2𝛤) × (𝐶𝑎0 − 𝛤)
 (8) 198 

 199 

In which A0 is the photosynthetic rate of a modern model species that can represent the fossil species’ 200 

photosynthetic rate, and Ca0 is the atmospheric carbon dioxide level at which A0 was measured. A0 for 201 
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each fossil species was derived from the compilation of photosynthetic rates presented in Reichgelt and 202 

D’Andrea (2019). For fossil leaves with known modern relatives, we constrained the possible A0 range by 203 

only including modern relatives within the same family or order, i.e. Lauraceae for Litsea calicarioides, 204 

Cryptocarya taieriensis, C. maarensis, cf. Cryptocarya, Beilschmiedia otagoensis and cf. Endiandra, 205 

Myrtaceae for cf. Myrtaceae, Liliales for cf. Ripogonum, Primulaceae for cf. Myrsine, Elaeocarpaceae and 206 

Cunoniaceae for cf. Elaeocarpaceae/Cunoniaceae, Meliaceae for cf. Meliaceae, Atherospermataceae for 207 

Laurelia otagoensis, and Laurales for Hedycarya pluvisilva. Then, following the method of constraining 208 

A0 of modern living relatives presented in Reichgelt and D’Andrea (2019), only A0 values of plants with 209 

similar growth forms to the fossil plants, and growing in similar light environments as Foulden Maar were 210 

included. A0 and Ca0 used in the Franks et al. (2014) model, and associated ecology of fossil leaf types is 211 

shown in Table S2. 212 

 213 

The Franks et al. (2014) gas-exchange model thus iteratively solves for Ca, An, and Gc. However, only 214 

leaves derived from canopy trees are likely to represent these values at light saturation. Moreover, plants 215 

in the understory assimilate a mix of atmospheric and respired CO2, which has therefore already 216 

undergone fractionation processes, making the calculated Ci/Ca problematic. Therefore, we present the 217 

results for Ca, An, and Gc of leaf types most likely to be derived from canopy trees separately, as they are 218 

more likely to not have a systematic skew.  219 

iWUE is defined as the ratio between An and stomatal conductance to water (Feng, 1999). 220 

 221 

𝑖𝑊𝑈𝐸 =
𝐴𝑛

𝐺𝑤
 (9) 222 

 223 

Due to the different rates at which carbon dioxide and water vapor diffuse in air, a transformation of Gc is 224 

required to calculate Gw. 225 

 226 
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𝐺𝑤 = 1.6 × 𝐺𝑐  (10) 227 

 228 

Finally, cumulative annual carbon uptake through photosynthesis (Atot) can be calculated in gC m-2 yr-1, 229 

by transferring from moles to grams, including a measure for the relative time the leaf is assimilating 230 

carbon (ζ), and a measure for the absolute amount of time that the leaf was assimilating carbon. 231 

 232 

𝐴𝑡𝑜𝑡 = (2.6 × 𝜁 × 𝐴𝑛 × 𝐺𝑆) × 12 (11) 233 

 234 

In which GS is the length of the growing season, which we can derive from the fossil plant assemblage 235 

(Reichgelt et al., 2019), using the method of Spicer et al. (2009). Gw, Atot, and iWUE values for Litsea 236 

calicarioides, Cryptocarya taieriensis, C. maarensis, cf. Elaeocarpaceae/Cunoniaceae, and cf. Myrtaceae 237 

are presented in Table S3. The modern reference An and Gw data is derived from Maire et al. (2015), 238 

which included coordinates, habit, An and Gw data, from which we could then calculate iWUE and Atot. 239 

 240 

2.4 Comparison to Earth System Sensitivity 241 

Earth System Sensitivity to Ca (ESS) is the amount of temperature increase expected under a doubling of 242 

atmospheric CO2. This sensitivity is likely not static in Earth’s history and is dependent on, among other 243 

aspects, continental configuration and ocean circulation patterns (Royer, 2016). ESS is likely to have been 244 

between 3–7°C for the Neogene (Hansen et al., 2013; Royer, 2016), meaning that a doubling of Ca 245 

compared to pre-industrial levels would have led to an increase of global average surface temperatures 246 

(Ts) of 3–7°C compared to modern. Using this expected ESS, we calculated the expected Ca using the 247 

methodology of Hansen et al. (2013). 248 

Compiled deep-sea benthic foraminifera δ18O data of the last 30 million years (Zachos et al., 2001) 249 

were averaged into 20 kyr time bins. Deep-sea temperatures (Td) were then calculated using the linear 250 

transfer functions of Hansen et al. (2013), which depend on the presence of sea-ice. 251 

 252 
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𝑇𝑑 = 5 − 8 ×
𝛿18𝑂 − 1.75

3
 𝐼𝐹 (𝛿18𝑂 < 3.25)(12) 253 

𝑇𝑑 = 1 − 4.4 ×
𝛿18𝑂 − 3.25

3
 𝐼𝐹 (𝛿18𝑂 > 3.25)(13) 254 

 255 

Ts was then calculated for post-Pliocene using: 256 

 257 

𝑇𝑠 = 2 × 𝑇𝑑 + 12.25  (14) 258 

For the Pliocene: 259 

𝑇𝑠 = 2.5 × 𝑇𝑑 + 12.15  (15) 260 

 261 

And for pre-Pliocene we assumed that Ts changed linearly with Td, by a factor of 1.5. 262 

 263 

∆𝑇𝑠 = 1.5 × ∆𝑇𝑑  (16) 264 

 265 

Ca based on an ESS range of 3–7°C was then calculated using the resulting Ts. 266 

 267 

𝐶𝑎 = 310 ×
𝑇𝑠[𝑥] − 𝑇𝑠[0]

2 × 𝐸𝑆𝑆
+ 310  (17) 268 

 269 

In which Ts[x] is the calculated average global surface temperature at time x, and Ts[0] is the modern day 270 

average global surface temperature. 271 

 272 

3 Results and Discussion 273 

3.1 Southern Temperate Rainforest Paleoecology 274 

Modern day Lauraceae rainforests in New Zealand have a single dominant canopy tree, Beilschmiedia 275 

tawa, and their farthest southern extent is ~42°S (Leathwick, 2001), the farthest southern occurrence of 276 
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any arborescent Lauraceae species in the world. Rainforests at higher latitudes in New Zealand are 277 

usually dominated by Nothofagaceae or Podocarpaceae, and the only modern-day forests at ~50°S are the 278 

Magellanic Subpolar Forests in southern South America. Low-growing Podocarpaceae/Nothofagaceae 279 

forests, similar to modern forests in southern New Zealand and southern South America, dominated 280 

Antarctic vegetation during the early Miocene (Askin and Raine, 2000) and the Foulden Maar rainforest 281 

included at least ten Lauraceae species (Bannister et al., 2012), emphasizing the expanded biosphere 282 

potential in the early Miocene compared to today (Herold et al., 2010). 283 

We identify L. calicarioides, C. maarensis, C. taieriensis, cf. Elaeocarpaceae/Cunoniaceae, and cf. 284 

Myrtaceae as the most probable canopy components because they lack 1) the large range of leaf δ13C 285 

values, relatively low overall leaf δ13C values (Graham et al., 2014), 2) low cell densities typical of 286 

understory components (Kürschner, 1997; Bush et al., 2017) (Fig. 2 a,b), and 3) the undulating or sinuous 287 

cell walls typical of understory components (Kürschner, 1997; Bush et al., 2017). The most likely 288 

subcanopy or understory taxa were cf. Ripogonum, cf. Myrsine, “O”, and cf. Dysoxylum, because leaf 289 

fossils of these types have both low leaf δ13C and sinuous or undulating cells (Fig. S1e,f, S2b,d). H. 290 

pluvisilva, L. otagoensis, cf. Cryptocarya, cf. Endiandra, B. otagoensis, “C”, “H”, “P”, and “Q”, all 291 

displayed some variation in these features and occurred in relative low abundance, and are therefore 292 

considered of uncertain ecological affinity.  293 

 294 

3.2 Earliest Miocene CO2 295 

Gas-exchange modeling (Franks et al., 2014) of canopy leaves throughout the Foulden Maar core 296 

indicates that Ca was 445 +618 / -100 ppm, whereas understory elements experienced a higher Ca of 622 297 

+3017 / -161 ppm (Fig. 2c), consistent with understory plants assimilating respired CO2 that has 298 

undergone prior fractionation processes, as well as experiencing elevated levels of Ca under the canopy 299 

(Graham et al., 2014; Royer et al., 2017). Prior work on the Foulden Maar core established three different 300 

phases based on bulk organic δ13C (Fig. 1c), fatty acid δ13C, and fatty acid δD: Phase I (80–105 m depth) 301 

with high δ13C and low δD, Phase II (55–65 m depth) with low δ13C and high δD, and Phase III (0–45 m 302 
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depth) with high δ13C and low δD (Reichgelt et al., 2016). Phase III can be further subdivided into Phase 303 

IIIa (30–45 m depth) and IIIb (0–20 m depth), as Phase IIIa exhibits a period of low fatty acid δ13C and 304 

high δD, which is not expressed in bulk organic δ13C (Reichgelt et al., 2016). Gas-exchange modelling on 305 

leaves from these phases (Fig. 1c) suggest that during Phase II and IIIa Ca may have been elevated (Ca = 306 

529 +1159 / -125 and Ca = 538 +769 / -181 ppm, respectively) compared to Phase I and Phase IIIb (Ca = 307 

444 +572 / -95 and 442 +1219 / -110 ppm, respectively) (Fig. 3). 308 

The advantage of using gas-exchange modeling to reconstruct Ca from multiple species is that the 309 

uncertainty is quantified and constrained, greatly reducing the potential for systematic error in the final 310 

estimate (Reichgelt and D’Andrea, 2019; Royer et al., 2019). Along with the enhanced accuracy comes a 311 

more comprehensive appraisal of uncertainty than is achieved using other proxy approaches (Fig. 4). 312 

Proxy error propagation is based on mechanistic variability, grounded in known physical and 313 

physiological limits of plant gas-exchange that are understood to be universal (Franks et al., 2014). This 314 

differs from empirical proxies, whose uncertainty representation is based on calibration error of modern-315 

day observations without mechanistic constraints. Our canopy Ca estimate (445 +618 / -100 ppm, Fig. 2c) 316 

is independent of calibration error, based on universal gas-exchange mechanisms, and represents plant 317 

vegetative organs of multiple plant species that directly interacted with the available pool of atmospheric 318 

carbon dioxide. Previous Ca estimates from the Oligocene/Miocene boundary based on boron isotopes 319 

and paleosol carbonates are generally lower than our estimates (Ji et al., 2018; Greenop et al., 2019) (Fig. 320 

4b), whereas Ca estimates based on stomatal index and recent alkenone-based Ca estimates are more 321 

similar to our results (Kürschner et al., 2008; Super et al., 2018). 322 

Reconstructions of globally elevated temperatures of 5–6 °C in the early Miocene (Hansen et al., 323 

2013) with a Ca of ~300 ppm (Ji et al., 2018; Greenop et al., 2019) upsets the expected ESS to Ca during 324 

this period (Henrot et al., 2010). Geochemical Ca proxy estimates consistently produce Ca estimates that 325 

are too low to satisfy ESS to Ca prior to the Pliocene (Royer, 2016) (Fig. 4a,b). Estimates from the fossil 326 

leaf-based stomatal index proxy for Ca (Kürschner et al., 2008) on the other hand do indicate a positive 327 

correlation between temperature and Ca in the Neogene (Fig. 4a). At present, there are too few studies that 328 
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reconstruct Ca using gas-exchange modeling to allow for a full comparison to other Ca proxies; however, 329 

our Ca estimates of ~450–550 ppm are in line with the ESS to Ca in the early Miocene (Fig. 4a,b), based 330 

on modelling experiments (Herold et al., 2010; Henrot et al., 2010). Moreover, thus far, Neogene Ca 331 

estimates reconstructed using gas-exchange methods (Reichgelt et al., 2016; Tesfamichael et al., 2017; 332 

Londoño et al., 2018; Moraweck et al., 2019) appear to agree with the suggested ESS to Ca (Fig. 4a,b).  333 

Bulk organic and leaf wax δ13C values reveal a ~4‰ decrease at Foulden Maar over a 10-meter 334 

interval at the beginning of Phase II (55–65 m depth), likely representing a time period of <10 kyr (Fox et 335 

al., 2016). This shift in isotopic composition suggests a substantial change in the global carbon cycle 336 

(Reichgelt et al., 2016). Results presented here show a ~100 ppm Ca increase (from ~450 to 550) from 337 

Phase I to Phase II (Fig. 3). The Ca values stay near 550 ppm throughout Phase II and Phase IIIa, 338 

representing a 20–40 kyr time period (Fig. 3). Absolute dating of Foulden Maar based on paleomagnetic 339 

reversals in the core, annual lamination of lake sediments, and basalt-derived Ar/Ar dates indicates that 340 

the deposition of the Foulden Maar sediment coincided with the termination of the earliest Miocene (Mi-341 

1) glaciation of Antarctica (Fox et al., 2015). An increase in Ca from ~450 to ~550 ppm at the termination 342 

of Mi-1 is consistent with modeling studies indicating that Ca > 500 ppm is necessary to terminate a large-343 

scale Antarctic glaciation (DeConto et al., 2008). 344 

 345 

3.3 Elevated CO2 and the early Miocene biosphere 346 

The Foulden Maar Miocene rainforest was primarily evergreen (Lee et al., 2016). The main Miocene 347 

canopy trees at Foulden Maar, Litsea calicarioides, Cryptocarya taieriensis, C. maarensis, cf. 348 

Elaeocarpaceae/Cunoniaceae and cf. Myrtaceae, had relatively high iWUE (Miocene iWUE first quartile 349 

[Q1] – third quartile [Q3] = 70–101) compared to modern evergreen trees (evergreen iWUE Q1–Q3 = 31–350 

73) (Fig. 5a). Reconstructed iWUE from tropical early Miocene plants (Tesfamichael et al., 2017; 351 

Londoño et al., 2018) is slightly higher (Q1–Q3 = 80–125) (Fig. 5a). The difference between reconstructed 352 

Miocene iWUE and that of modern deciduous trees is greater still (deciduous iWUE Q1–Q3 = 27–52), 353 

consistent with the expectation that increased Ca favors evergreen trees (Niinemets et al., 2011; Soh et al., 354 
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2019). In contrast to iWUE, reconstructed conductance to water (Gw) for Miocene trees is similar to the 355 

modern-day range at the same latitude (Fig. 5b), a somewhat surprising result because Gw is expected to 356 

be reduced in high Ca climates (Franks and Beerling, 2009). Increased atmospheric evaporative demand 357 

in combination with a longer growing season in a warmer climate would facilitate a relatively high 358 

hydraulic flux to the atmosphere, despite higher iWUE and similar Gw (Frank et al., 2015). Furthermore, a 359 

longer growing season also results in increased total annual carbon flux (Atot) to the biosphere (Fig. 5c). 360 

Early Miocene trees at 50°S likely assimilated Atot Q1–Q3 = 265–696 gC m-2 yr-1, in comparison to Atot 361 

Q1–Q3 = 108–182 gC m-2 yr-1 in modern evergreen forests, and Atot Q1–Q3 = 249–410 gC m-2 yr-1 in 362 

modern deciduous forests at the same latitude (Fig. 5c). Tropical trees appear to have slightly higher total 363 

annual carbon flux (Atot Q1–Q3 = 596–1220 gC m-2 yr-1) than today (Atot Q1–Q3 = 329–721 gC m-2 yr-1). 364 

Although this estimate cannot take the number of leaves per unit area into account, the results provide 365 

strong evidence for enhanced productivity in “greener” worlds. 366 

 367 

4 Conclusions 368 

Leaf-level gas-exchange derived Ca estimates suggest that early Miocene atmospheric CO2 was higher 369 

than pre-industrial levels at 450–550 ppm, further solidifying the growing consensus of relatively high 370 

early Miocene global temperatures maintained by high atmospheric CO2 (Kürschner et al., 2009; 371 

Tesfamichael et al., 2017; Super et al., 2018; Londoño et al., 2018; Moraweck et al., 2019). A relatively 372 

high Ca in the early Miocene also satisfies an Earth System Sensitivity of 3–7°C (Hansen et al., 2013; 373 

Royer, 2016). A potential shift in atmospheric CO2 from 450 to 550, and back to 450, is recorded in the 374 

100 kyr of sedimentation and leaf deposition at Foulden Maar. A disruption of the regional carbon and 375 

hydrological cycle was also recorded in leaf-wax δ13C and δD (Reichgelt et al., 2016), and may be linked 376 

to the Antarctic deglaciation at the termination of the Mi-1 (DeConto et al., 2008; Fox et al., 2015; 377 

Liebrand et al., 2017).  378 

The first record is provided of increased Miocene leaf-level intrinsic water-use efficiency in both 379 

temperate New Zealand and the tropics, and we provide evidence for increased leaf-level productivity in 380 
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temperate New Zealand. Enhanced productivity and water-use efficiency on other landmasses in 381 

temperate latitudes during the early Miocene, such as North America, Australia, and Asia, would have 382 

had a major impact on the global carbon and water cycles. Our gas-exchange results from New Zealand, 383 

supplemented with results from Ethiopia (Tesfamichael et al., 2017) and Panama (Londoño et al., 2018) 384 

provide empirical evidence for high water-use efficiency in the globally warmer world of the early 385 

Miocene, associated with elevated Ca. Tropical trees with high water-use efficiency compared to modern, 386 

would have likely facilitated forest survival in climates where currently tropical savannas and grasslands 387 

exist. An overall higher water-use efficiency in the early Miocene tropics is corroborated by the spread of 388 

C4 grasslands in the late Miocene, when reduced CO2 levels started favoring the more efficient C4 389 

photosynthetic pathway (Strömberg, 2011; Polissar et al., 2016).  390 

Emission scenarios suggest that atmospheric CO2 will reach our reconstructed early Miocene values of 391 

450 ppm by 2030–2040 CE. While the global temperature response may lag the Ca increase, and forest 392 

habitat expansion is hampered by the slow dispersal and growth rate of climax forest trees and 393 

anthropogenic influence (e.g., forest fragmentation and fire), early Miocene water-use efficiency and 394 

productivity estimates provide insight into the near future-biosphere potential, as well as into selective 395 

pressures that influence the types of plants that may proliferate under future elevated Ca.  396 
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Figure and Figure legends 626 

 627 

 

 628 

Figure 1. Foulden Maar site information. (a) Location of the Foulden Maar deposit and paleogeographic 629 

reconstruction of early Miocene New Zealand (Boyden et al., 2011; Lee et al., 2014). (b) Schematic 630 

reconstruction of the Foulden Maar depositional environment. (c) Stratigraphic column of the Foulden 631 

Maar core (Fox et al., 2015), with sample locations and bulk organic δ13C (Reichgelt et al., 2016). 632 

 633 

Fig. 2 634 
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 635 

Figure 2. Foulden Maar paleoecology and atmospheric CO2 reconstructions. (a) δ13C values and 636 

stomatal density from the fossil leaves of Foulden Maar provide constraints to distinguish canopy leaf 637 

types from understory, because understory leaves tend to have a high range of δ13C and low cell density 638 

(Graham et al., 2014; Bush et al., 2017). (b) Paleoecological reconstruction of the dense rainforest at 639 

Foulden Maar with a canopy comprising Litsea calicarioides (Lcal), Cryptocarya taieriensis (Ctai), C. 640 

maarensis (Cmaa), cf. Elaeocarpaceae/Cunoniaceae (E/C), and cf. Myrtaceae (Myrt), and an understory 641 

comprising cf. Myrsine (Myrs), cf. Ripogonum (Rip), cf. Dysoxylum (Dys), and leaf type “O”. Hedycarya 642 

https://doi.org/10.5194/cp-2020-30
Preprint. Discussion started: 10 March 2020
c© Author(s) 2020. CC BY 4.0 License.



25 
 

pluvisilva (Hplu), Laurelia otagoensis (Lota), Beilschmiedia otagoensis (Bota), cf. Cryptocarya (cfC), cf. 643 

Endiandra (cfE), and leaf types “C”, “H”, “P”, and “Q” could not be ecologically placed with certainty. 644 

(c) Probability density distributions of Ca reconstructions from canopy (thick light green line) and 645 

understory components (thick dark green line) using a gas-exchange model (Franks et al., 2014). Grey 646 

curves represent 1000 Monte Carlo reconstructions on a single fossil leaf. 647 

 648 

 649 

Figure 3. Probability density distributions of Ca reconstructions using a gas-exchange model (Franks et 650 

al., 2014), divided by bulk carbon isotope phases (Fig. 1c). 651 

 652 

Fig. 4 653 
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 654 

Figure 4. Neogene Earth System Sensitivity (ESS) and Ca reconstructions. Calculated Ca levels for an 655 

ESS range of 3–7 °C (orange shaded area) for the last 30 Ma (a), and for the interval between 22.5–23.5 656 

Ma (b), the red dashed line in (b) indicates the global average surface temperature (Ts) in the earliest 657 

Miocene (Hansen et al., 2013). The ESS envelope was determined using deep-sea δ18O of benthic 658 

foraminifera (Zachos et al., 2001) and the transform function approach from Hansen et al. (2013) 659 

(Supplementary Information). Proxy-based Neogene Ca reconstructions are derived from a previously 660 

published compilation (Foster et al., 2017) and are supplemented with more recently published data (Ji 661 

et al., 2019; Londoño et al., 2018; Super et al., 2018; Greenop et al., 2019; Moraweck et al., 2019, 662 

Steinthorsdottir et al., 2019). Error bars on gas-exchange based proxy estimates represent ±1σ. 663 

 664 

Fig. 5 665 
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 666 

Figure 5. Early Miocene leaf-level physiological parameters of canopy trees. (a) Intrinsic water-use 667 

efficiency (iWUE) of evergreen (green circles) and deciduous trees (red circles) based on modern leaf-668 

level measurements (Maire et al., 2015), and fossil reconstructions (green triangles and diamonds). Error 669 

bars on fossil-derived data indicate ±1σ, box-and-whisker plots indicate median, first and third quartile 670 

(Q1 and Q3), and 95% confidence interval of modern leaves of canopy trees. Individual datapoints are 671 

randomized on the x-axis for a clearer depiction of the distribution. (b) Conductance to water (Gw) from 672 

modern evergreen (Ev) and deciduous (Dec) trees (Maire et al., 2015) and fossils (EM) from different 673 

latitudes. The shaded red and green areas indicate the Q1–Q3 range of modern evergreen and deciduous 674 

trees, respectively, and the dashed lines indicate the overall linear trend with latitude. Text in panel is the 675 

Q1–Q3 range for each group, grouped in 5° latitude bins. (c) Total annual carbon flux per unit leaf area 676 

(Atot) from modern evergreen (Ev) and deciduous (Dec) trees (Maire et al., 2015) and fossils (EM) from 677 

different latitudes. The shaded red and green areas indicate the Q1–Q3 range of modern evergreen and 678 

deciduous trees, respectively, and the dashed lines indicate the overall exponential trend with latitude. 679 

Text in panel is the Q1–Q3 range for each group, grouped in 5° latitude bins. 680 

 681 

Data availability. All raw measurement data on fossil leaves generated for this paper is available in the 682 

online supplementary information. Raw measurements on fossil leaves from Ethiopia (Tesfamichael et 683 

al., 2017) and Panama (Londoño et al., 2018), δ18O measurements (Zachos et al., 2001), and iWUE, Gw 684 
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and An measurements on modern plants (Maire et al., 2015) are available through the cited original 685 

works. 686 
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